Tuesday, March 7, 2017

I want that man's blood and I will have it no matter what it costs me personally.

This is the first I have heard of this book, from 1966, but it looks good. From Men, Machines and Modern Times by Elting E. Morison. Morison seeks to identify the stages through which we progress towards acceptance of a new innovation.

In this case study, he looks at the adoption of continuous-aim firing of cannon on warships. The recalcitrant villain in this play is, not surprisingly, the Bureau of Ordnance in Washington, D.C.. The same official party which sent our submarines in to battle in World War II with grossly fallible torpedoes.

The inventor of the continuous-aim firing was a British naval officer, Percy Scott. From Morison's account:
In 1900 Percy Scott went out to the China Station as commanding officer of H.M.S. Terrible. In that ship he continued his training methods and his spectacular successes in naval gunnery. On the China Station he met up with an American junior officer, William S. Sims. Sims had little of the mechanical ingenuity of Percy Scott, but the two were drawn together by temperamental similarities that are worth noticing here. Sims had the same intolerance for what is
called spit and polish and the same contempt for bureaucratic inertia as his British brother officer. He had for some years been concerned, as had Scott, with what he took to be the inefficiency of his own Navy. Just before he met Scott, for example, he had shipped out to China in the brand new pride of the fleet, the battleship Kentucky. After careful investigation and reflections he had informed his superiors in Washington that she was "not a battleship at all--but a crime against the white race." The spirit with which he pushed forward his efforts to reform the naval service can best be stated in his own words to a brother officer: "I am perfectly willing that those holding views differing from mine should continue to live, but with every fibre of my being I loathe indirection and shiftiness, and where it occurs in high place, and is used to save face at the expense of the vital interests of our great service (in which silly people place such a child-like trust), I want that man's blood and I will have it no matter what it costs me personally."

From Scott in 1900 Sims learned all there was to know about continuous-aim firing. He modified, with the Englishman's active assistance, the gear on his own ship and tried out the new system. After a few months training, his experimental batteries began making remarkable records at target practice. Sure of the usefulness of his gunnery methods, Sims then turned to the task of educating the Navy at large. In thirteen great official reports he documented the case for continuous-aim firing, supporting his arguments at every turn with a mass of factual data. Over a period of two years, he reiterated three principal points: first, he continually cited the records established by Scott's ships, the Scylla and the Terrible, and supported these with the accumulating data from his own tests on an American ship; second, he described the mechanisms used and the training procedures instituted by Scott and himself to obtain these records; third, he explained that our own mechanisms were not generally adequate without modification to meet the demands placed on then by continuous-aim firing. Our elevating gear, useful to raise or lower a gun slowly to fix it in position for the proper range, did not always work easily and rapidly enough to enable a gunner to follow a target with his gun throughout the roll of the ship. Sims also explained that such few telescope sights as there were on board our ships were useless. Their cross wires were so thick or coarse they obscured the target, and the sights had been attached to the gun in such a way that the
recoil system of the gun plunged the eyepiece against the eye of the gun pointer.

This was the substance not only of the first but of all the succeeding reports written on the subject of gunnery from the China Station. It will be interesting to see what response these met with in Washington. The response falls roughly into three easily identifiable stages. First stage: At first, there was no response. Sims had directed his comments to the Bureau of Ordnance and the Bureau of Navigation; in both bureaus there was dead silence. The thing--claims and records of continuous-aim firing--was not credible. The reports were simply filed away and forgotten. Some indeed, it was later discovered to Sims's delight, were half-eaten- away by cockroaches.

Second stage: It is never pleasant for any man's best work to be left unnoticed by superiors, and it was an unpleasantness that Sims suffered extremely ill. In his later reports, beside the accumulating data he used to clinch his argument, he changed his tone. He used deliberately shocking language because, as he said, "They were furious at my first papers and stowed them away. I therefore made up my mind I would give these later papers such a form that they would be dangerous documents to leave neglected in the files." To another friend he added, "I want scalps or nothing and if I can't have 'em I won't play."

Besides altering his tone, he took another step to be sure his views would receive attention. He sent copies of his reports to other officers in the fleet. Aware as a result that Sims's gunnery claims were being circulated and talked about, the men in Washington were then stirred to action. They responded, notably through the Chief of the Bureau of Ordnance, who had general charge of the equipment used in gunnery practice, as follows: (1) our equipment was in general as good as the British; (2) since our equipment was as good, the trouble must be with the men, but the gun pointer and the training of gun pointers were the responsibility of the officers on the ships; and most significant (3) continuous-aim firing was impossible. Experiments had revealed that five men at work on the elevating gear of a six-inch gun could not produce the power necessary to compensate for a roll of five degrees in ten seconds. These experiments and calculations demonstrated beyond peradventure or doubt that Scott's system of gunfire was not possible.

This was the second stage - the attempt to meet Sims's claims by logical, rational rebuttal. Only one difficulty is discoverable in these arguments; they were wrong at important points. To begin with, while there was little difference between the standard British equipment and the standard American equipment, the instruments on Scott's two ships, the Scylla and the Terrible, were far better than the standard equipment on our ships. Second, all the men could not be trained in continuous-aim firing until equipment was improved throughout the fleet. Third, the experiments with the elevating gear had been ingeniously contrived at the Washington Navy Yard--on solid ground. It had, therefore, been possible to dispense in the Bureau of Ordnance calculation with Newton's first law of motion, which naturally operated at sea to assist the gunner in elevating or depressing a gun mounted on a moving ship. Another difficulty was of course that continuous-aim firing was in use on Scott's and some of our own ships at the time the Chief of the Bureau of Ordnance was writing that it was a mathematical impossibility. In every way I find this second stage, the apparent resort to reason, the most entertaining and instructive in our investigation of the responses to innovation.

Third stage: The rational period in the counterpoint between Sims and the Washington men was soon passed. It was followed by the third stage, that of name-calling-the argumentum ad hominem. Sims, of course, by the high temperature he was running and by his calculated over-statement, invited this. He was told in official endorsements on his reports that there were others quite as sincere and loyal as he and far less difficult; he was dismissed as a crackbrained egotist; he was called a deliberate falsifier of evidence.

The rising opposition and the character of the opposition were not calculated to discourage further efforts by Sims. It convinced him that he was being attacked by shifty, dishonest men who were the victims, as he said, of insufferable conceit and ignorance. He made up his mind, therefore, that he was prepared to go to any extent to obtain the "scalps" and the "blood" he was after. Accordingly, he, a lieutenant, took the extraordinary step of writing the President of the United States, Theodore Roosevelt, to inform him of the remarkable records of Scott's ships, of the inadequacy of our own
gunnery routines and records, and of the refusal of the Navy Department to act. Roosevelt, who always liked to respond to such appeals when he conveniently could, brought Sims back from China late in 1902 and installed him as Inspector of Target Practice, a post the naval officer held throughout the remaining six years of the Administration. And when he left, after many spirited encounters we cannot here investigate, he was universally acclaimed as "the man who taught us how to shoot."

With this sequence of events (the chronological account of the innovation of continuous-aim firing) in mind, it is possible now to examine the evidence to see what light it may throw on our present interest: the origins of and responses to change in a society.

First, the origins. We have already analyzed briefly the origins of the idea. We have seen how Scott arrived at his notion. We must now ask ourselves, I think, why Sims so actively sought, almost alone among his brother officers, to introduce the idea into his service. It is particularly interesting here to notice again that neither Scott nor Sims invented the instruments on which the innovation rested. They did not urge their proposal, as might be expected, because of pride in the instruments of their own design. The telescope sight had first been placed on shipboard in 1892 by Bradley Fiske, an officer of great inventive capacity. In that year Fiske had even sketched out on paper the vague possibility of continuous-aim firing, but his sight was condemned by his commanding officer, Robley D. Evans, as of no use. In 1892 no one but Fiske in the Navy knew what to do with a telescope sight any more than Grosseteste had known in his time what so do with a telescope. And Fiske, instead of fighting for his telescope, turned his attention to a range finder. But six years later Sims, following the tracks of his brother officer, took over and became the engineer of the revolution. I would suggest, with some reservations, this explanation: Fiske, as an inventor, took his pleasure in great part from the design of the device, he lacked not so much the energy as the overriding sense of social necessity that would have enabled him to force revolutionary ideas on the service. Sims possessed this sense. In Fiske, who showed rare courage and integrity in other professional matters nor intimately connected with the introduction of new weapons of his own design, we may here find the familiar plight of the engineer who often enough must watch the products of his ingenuity organized and promoted by other men. These other promotional men when they appear in the world of commerce are called entrepreneurs. In the world of ideas they are still entrepreneurs. Sims was one, a middle-aged man caught in the periphery (as a lieutenant) of the intricate webbing of a precisely organized society. Rank, the exact definition and limitation of a man's capacity at any given moment in his career, prevented Sims from discharging all his exploding energies into the purely routine channels of the peacetime Navy. At the height of his powers he was a junior officer standing watches on a ship cruising aimlessly in friendly foreign waters. The remarkable changes in systems of gunfire to which Scott introduced him gave him the opportunity to expend his energies quite legitimately against the encrusted hierarchy of his society. He was moved, it seems to me, in part by his genuine desire to improve his own profession but also in part by rebellion against tedium, against inefficiency from on high, and against the artificial limitations placed on his actions by the social structure, in his case, junior rank.

Now having briefly investigated the origins of the change, let us examine the reasons for what must be considered the weird response we have observed to this proposed change. Why this deeply rooted, aggressive, persistent hostility from Washington that was only broken up by the interference of Theodore Roosevelt? Here was a reform that greatly and demonstrably increased the fighting effectiveness of a service that maintains itself almost exclusively to fight. Why then this refusal to accept so carefully documented a case, a case proved incontestably by records and experience? Why should virtually all the rulers of a society so resolutely seek to reject a change that so markedly improved its chances for survival in any contest with competing societies? There are the obvious reasons that will occur to all of you - the source of the proposed reform was an obscure, junior officer 8000 miles away; he was, and this is a significant factor, criticizing gear and machinery designed by the very men in the bureaus to whom lie was sending his criticisms. And furthermore, Sims was seeking to introduce what he claimed were improvements in a field where improvements appeared unnecessary. Superiority in war, as in other things, is a relative matter, and the Spanish-American War had been won by the old system of gunnery. Therefore, it was superior even though of the 9500 shots fired at various but close ranges, only 121 had found their mark.

No comments:

Post a Comment